\ <

™

N Technical Report No. 32-90

g A Study of Injection Guidance
p~ Accuracy as Applied to Lunar
2 and Interplanetary Missions

LR O
e T,
o

- H.J.Gordo

jpl

' CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

T PROPULSION LABORATORY

May 15, 1961




. ,_4"

National Aeronautics and Space Administration

Contract No. NASw-6

Technical Report No. 32-90

A STUDY OF INJECTION GUIDANCE

ACCURACY AS APPLIED TO LUNAR

AND INTERPLANETARY MISSIONS

H. J. Gordon

2205

C. R. Gates, Chief
Systems Analysis Section

JET PROPULSION LABORATORY
California Institute of Technology
Pasadena, California
May 15, 1961




Copyright © 1961
Jet Propulsion Laboratory
California Institute of Technology




JPL Technical Report No. 32-90

CONTENTS
Abstract . . . . . . . e e e e e e e e e s e e e e e e e e e e e e e e A |
I. Introduction . . . . . . . ¢ ¢ v v i i i e e e e e e e e e e e e e e e 2
II. Description of Systems Studied . . . . . . . .. ... o000 0L 3

III. Description of the Computation of Injection Coordinate Errors . . . . 5

IV. Statistical Calculations . . . . . . « . ¢ v ¢« v v v e 0 v v e 0o e 6
V. Unitsof Variance . . . . . . « o o v o v v v v v v o v v o o e a e e e 10
VI. Effect of Parking Orbit . . . . . . . . . v v v o v v v v v e v e e 12
VII. Results. . . . . v v v v vt e v it v e e e e e e e e e e e e e e e 14
VIII. ConcluSIoNS . . v v v v v v v v v v s o s o o s o o o o o o o v o o o o s 15
Tables . . . . i i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 16
Figures . . . . v i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 20
AppendixXes . . . . . i e e e e e e e e e e e e e e e e e e e e e e e e e e e e 29
A. Description of the Matrices . . . . . . . . . . ¢+ o o o o v v v o o . 29
B. Derivation of Error Terms . . . . . . ¢ . ¢ o v o o v v o v v 0 o o e 32
References . . . . . . . @ . L L L e e e e e e e e e e e e e e e e e e e 46
TABLES

1. One-Sigma Component Errors (Assuming Gaussian Distribution) . . . . 16
2. Number of Units of Variance for Error Sources Studied . . . . . . . . . 17
3. Trajectory Description and Uncorrected One-Sigma Target Error

(FOM) Due to Injection EXrors . . . « . v v o ¢ o o o o o o o o o o o o s 18

4, Statistics of Injection Errors for TrajectoryNo. 1 . . . . . .. .. .. 19

- 1ii -




JPL Technical Report No. 32-90

FIGURES

Accelerometer Orientation . . . . . . . .. . ... ... e e e e e e e e
Accelerometer Computer Loop . . « « ¢ ¢ v ¢« ¢ ¢ ¢ o o o o o o o o . .
Gyro Orientation. . . . . . . . . v o« vt v ettt e e e e e e e e
Coordinate Systems . . . . . . « o v v i 0t e e e e e e e e e e e e e
Flow Chart of Error Study . . . « « « ¢ ¢ ¢ ¢ v v v o o v s o o 0 o o o e
RMS Miss at Target vs Parking Orbit Arc for Typical Trajectories
RMS Miss at Target vs Parking Orbit Arc for Typical Trajectories . . .
RMS Target Miss vs Flight Time for Typical Lunar Trajectories. . . .
RMS Target Error vs Value of Guidance Parameters for

Trajectory NO. 5 . . . . v v v v v vt e i e e e e e e e e e e e e e e

_iv_




JPL Technical Report No. 32-90

A STUDY OF INJECTION GUIDANCE ACCURACY AS APPLIED TO

LUNAR AND INTERPLANETARY MISSIONS

H. J. Gordon

ABSTRACT

This report discusses studies that were performed at the Jet
Propulsion Laboratory to determine the accuracy of a typical inertial
guidance system as applied to future lunar and interplanetary missions.
Errors in guidance systems are described and analytical techniques for
converting these into injection and target errors are presented. The
statistics of injection, target, and midcourse maneuver errors are
briefly developed. The determination of midcourse maneuver fuel
requirements, which is the primary purpose of the study, is then dis-
cussed.

One of the important results of this analysis was an evaluation of
the effect of 'parking orbits' on injection guidance accuracy. These
"parking orbits' (circular satellite coast periods) will be necessary for
practical space missions of the near future in order to satisfy various
geometrical constraints in an efficient manner. The technique for calcu-
lating the injection errors and the effect of the ''parking orbit" on these

errors is described.
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The results of studies of several specific trajectories are
presented, illustrating the degree of accuracy that is to be expected for
practical deep space missions of the immediate future. It will be seen
that "parking orbits' do not necessarily reduce guidance accuracy, and

in fact, that there is an optimum coast arc.

I. INTRODUCTION

Guidance is necessary in order to steer a vehicle to injection. The
guidance system accomplishes this task by determining vehicle position
and velocity with some measuring device and controlling the direction of
the thrust vector until the guidance equations are satisfied, at which time
thrust is terminated. If the guidance equations are such that all pertur-
bations which are sensed are adequately compensated for, the vehicle will
follow the equivalent of a standard trajectory unless the guidance equip-
ment is inaccurate. In this case, the only sources of coordinate errors at
injection are component errors, which lead to an incorrect computation of
vehicle position and velocity. Since the vehicle's path is corrected to
compensate for any error, true or false, which the guidance system meas-
ures, the coordinate errors at injection can be set equal to the measure-
ment errors. This approach allows a system to be evaluated even though

the specific guidance equations are not known. Nonstandard performance

during burning leads to coordinate dispersions, which are not to be
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considered as guidance system errors. These coordinate dispersions can
be included in the statistical analysis of injection errors, as indicated in
Sec. 1v.1

Guidance system errors can be computed by integrating trajectories
with the assumed component errors, or can be derived analytically. This
paper derives an analytic method for computing these errors for an iner-
tial guidance system. The analytic method gives a good first-order
approximation which is quite adequate for error studies. By the use of
this method a study can be carried out much faster, requiring less com-

puter time than would be needed to actually integrate many trajectories.

II. DESCRIPTION OF SYSTEM STUDIED

The guidance system postulated for this study is a vehicle-borne
gyro-stabilized inertial platform on which are mounted three mutually
perpendicular integrating accelerometers. A digital computer finds
vehicle position and velocity and steers to shut-off in such a manner as
to compensate for measurable errors in the flight path.

The component error sources considered in this analysis are

accelerometer errors and gyro errors. The accelerometer errors are

IThe guidance system attempts to compensate for all dispersions
which are sensed. Approximations in the guidance equations may permit
some dispersions to be undetected and hence uncorrected. Fuel depletion
before desired thrust termination is sensed, but leads to dispersions
which cannot be corrected. These dispersion sources may be minimized
by proper design of the overall system.

-3 -
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considered to be scale factor, null shift, alignment, and integrator scale
factor errors. The gyro errors are considered to be initial offset, random
drift, and "g-sensitive' drift. It is assumed that these error sources are
uncorrelated. ‘Figure 1 shows the accelerometer orientation, Fig. 2

shows one accelerometer computer loop, Fig. 3 shows the gyro orienta-
tion, and Table 1 lists the component errors used for this study. These
values were taken from the open literature (l, 2, 3, 4). They represent
reasonable values, but do not reflect the performance of any specific
system.

The pre-injection trajectory is considered to be divided into two
powered flight phases, separated by a circular parking orbit coast period.
(See Fig. 4.) The parking orbit will be discussed further in Sec. VI. The
coordinate errors contributed by each of the powered flight phases are
computed in terms of quantities obtained from the standard trajectory, and
the results are combined at injection (See Appendix B). Certain assump-

tions are made in order to simplify the analysis, such that the vehicle is

restricted to a plane (the thrust plane).
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III. DESCRIPTION OF THE COMPUTATION

OF INJECTION COORDINATE ERRORS

At entry into the parking orbit the position and velocity errors
arising from each error source are computed in an inertial Cartesian
coordinate system (the plumb line system defined in Fig. 4) to obtain a
six-dimensional error vector. The error vectors are transformed to
the downrange point where the final burn terminates by a circular orbit
B matrix (See Appendix A). This transformation is most simply carried
out if the coordinate errors in the plane of motion are first put into polar
coordinates (See Fig. 4). The total coordinate error vectors at injection
are then obtained by adding the errors contributed by the final burn and
those accumulated during the coast interval.

Error vectors in Cartesian coordinates are designated by 6_}.(1 (the
subscript i indicates the number of the error source, of which a total of
18 are considered). The components of 6_).(i are designated by 6xij; j taking
on the values one through six, corresponding respectively to 6X, &Y, 65(,
63'(, 6Z, and 6Z which are the displacement and velocity errors defined in
the inertial plumb line system. Error vectors in polar coordinates are

designated by 6—21, with elements <Szi where j takes the values one

j)

through six, corresponding respectively to éx, ér, 6V, 6T, 6z, and 6z.
Writing X, and <SZi as row vectors, it is convenient to define [6X] and

[6Z]) as 18 x 6 matrices with elements 6 -

j and cSzi

j.
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A [6X] matrix is obtained for each of the two burning periods.
These are designated [6X] . and [éSX]2 corresponding to the burnout times

t, and t

1 o- The matrices [6Z] are computed from the transformation
k

matrix E, by: [62]k = [6X]kEk, where E, is the transformation from
Cartesian to polar coordinates at time ti, k = 1 or 2. (See Appendix A.)
The matrix which describes the coordinate errors at injection due
to first burn only is [(SZ]Il = [cSZ]1 B. For ease of computation, one
coordinate error, due to integrator scale factor error, accumulated
during the coast interval is calculated directly in polar coordinates. This
computation results in a [6Z] matrix. The total coordinate error matrix

at injection is then A = [62]11 + [6Z]2 + [62]3. The elements of these

matrices are derived in Appendix B.
IV. STATISTICAL CALCULATIONS

The six injection errors are random variables and must be described
by a six dimensional probability density function. If each error source is
a Gaussian variable, and if a linear relationship exists between these error
sources and the injection errors, then the injection error distribution is
Gaussian.

An N-dimensional Gaussian distribution can be represented as:

N

S| |-1/2
f(Xl, X2, Cee XN) = (2m) A

exp {-1/2 X A-l_}ZT}
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where X

17 oo XN are random variables, 5(. =(X,, X

1’ 95 s XN), the
superscript T indicates the transpose of the matrix with that superscript,
and A is the moment (or covariance) matrix which is real and symmetric.

The elements of the A matrix are the ensemble averages of the products

of the elements of the X vector.

2
le pxlxz“’xl"'.ac2 pxqpx37x1%4
T, O oy 2 0y . C
f\J pX2X1 X2 Xl Xz pX2pX3 X2 X3
A=X'R -

2 .
where Gxi is the variance of the ith random variable,
and pXin is the correlation between the ith and jth random variables.

Thus A is a complete statistical description of the probability distribution

(s)

(5). The moment matrix of error sources, A on a powered flight tra-
jectory is
2
o5y 0 0 -
2
0 os 0 .
2
A(S) _
) 0 0 2
0'S3
2
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where 01231 is the variance of the ith error source (i=1,2,+*--,N). The
off-diagonal terms are zero because it is assumed that there is no corre-
lation between error sources. The same technique can be utilized if
error sources are correlated, but in practice it is more convenient to use
a set of uncorrelated error sources.

Using linear perturbation theory, an error source vector is
mapped into an injection error vector by the transformation (using polar

coordinates)

6q = 5S L = (6x, 6r, 6v, 6, 6z, 62)

1)
ot
-
-
-
z

i
L is an N x 6 matrix with elements L = aqj/asi{j _

I
The moment matrix of injection coordinate deviations, A( ) is then:

107 ZT = TIT= T , (s)
A =6 gL 68 B L =L AYL

The A matrix, defined in Sec. III corresponds to (S—é L where the
elements of &S are the one-sigma values of component errors. Then
ATA = A(I). It may be desired to add more error sources to the analysis,
or to include the effects of coordinate dispersions. This can be done as

follows:

Let Ax =

where A is an (N-18) x 6 matrix containing the additional terms to be
included in the analysis. Then A = A% T A% is the required covariance

matrix. Notice that A*T Ax = ATA + ATA.

-8 -
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If the U matrix maps injection errors into target errors,

6M = 6q U = (6Mq, &My, 6M3). U is a 6 x 3 matrix with elements

u..

_ i
ij = an/aqi;j =

The moment matrix of target errors is then:

TNN——
A - T sm = uT AD gy
The elements of M may be position deviations at a standard time or at
closest approach, or other quantities of interest such as relative velocity
or time of flight at closest approach.

The U matrix may be considered as a function of the initial and
final values of some parameter defining position on the standard trajectory.
The initial value refers to the point where 6—& is evaluated and the final
value to the point where 6_1(/[ is evaluated. For convenience, consider the
final point fixed, as in the paragraph above where we have defined
67:1(1) U(I, T) = 6—1\./[, I indicates injection, and T indicates the reference
position at the target. If a midcourse maneuver is to be made, it will be
made at some point C on the trajectory. At that point, Sa(C) U(Cc,T) = 63/[
The midcourse maneuver changes the velocity such that all or some of the
components of ngI are nulled.

The midcourse velocity maneuver required is then (6)

—

6q, = - 6M F

-9 -
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where F is a 3 x 3 matrix with elements

n
—
-

. i 2,3
fl] = 6MJ/6qp{J = 1’ 2, 3
such that the velocity components are expressed in the appropriate coordi-

nate system.

The moment matrix of midcourse velocity requirements is then:

v T T (M
A =6q,a9, =F AF

The amount of fuel necessary to perform the midcourse maneuver

may then be calculated,
V. UNITS OF VARIANCE

To determine the effect of each component error, the uncorrected
RMS value of the magnitude of the change in impact parameter, which is
the distance from the center of the target to the incoming asymptote, was
used as a figure of merit, FOM (j_). The components of this FOM are

represented by the elements of §M which have been developed above.

where D = LLU

oM. . 9
The elements of D are dij = 33 J {1 1,2,...,N
i .

- 10 -
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oM, oM, —__
2 - 2 _ 2 k k
FOM< = ‘6M‘ = 61\/[1 + 6M2 + 61\/[3 dsj S§ sj
k=1 i,j=1
3 N . N
_ M) o2 _ N 2,2
dsi S1 11
k=1 i=1 i=1
where

. aNH\ oM\ [oM3)?
p; +
i ds; / ds; e
The percentage of FOM?Z due to the ith error source, to be called the num-

ber of units of variance is

100p?c 2

n; = 5
FOM

The value of the ith error source which produces one unit of variance

is

Values of nj are listed in Table 2 for the trajectories studied.

-11 -
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VI. EFFECT OF PARKING ORBIT

Direct ascent trajectories lose payload rapidly as true anomaly at
injection increases. In order to satisfy the necessary geometrical con-
straints and avoid large payload losses, the launching location must be
moved. This is an impractical solution. By using a parking orbit as part
of the ascent trajectory, the launcher is effectively moved and a given
mission may be accomplished with a resulting greater payload. In addi-
tion to this primary argument for the use of parking orbits, their utiliza-
tion affords a simple mechanism of correcting for launch time delays (8).
Thus it appears that a parking orbit will be used for most lunar and inter-
planetary missions.

A study was made to determine the effect of the parking orbit
interval on guidance errors. The parking orbit determines the effects of
the errors due to the first burning phase. The second burning phase
errors, in polar coordinates, do not change for a given mission. This
illustrates the utility of the polar coordinate system for the near Earth
part of the trajectory. For a given parking orbit, the ascent trajectory
does not change significantly with launch time delay so that [6Z]1 may be
considered constant. Then the moment matrix at injection into the parking
orbit, Afl) = [6Z]'1T [6Z] , is also constant. To determine the effect of

the parking orbit on the injection errors:

-12 -
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]

AD = ATy ={ [6z], B + [6Z]2}T {[<sz]1 B + [5212}

[6Z]g [s2],, + BT {[62]'{ [62], + [5z]'1r 7], p-l+p 1t [6z];7 [62] l}B

A+ BT [AD+ AL2) + A(L2)T]g

where A(2) = [6Z]2T [6Z]2 is the contribution of the second burn phase.
AL 2) = [6Z]’1P [<5Z]2 B! is a matrix in the form of a sum of outer
products of error vectors due to first burn and those of second burn
rotated back around the coast arc to the point of injection into the parking
orbit. The effect of the parking orbit on guidance accuracy is through the
correlations between injection errors which are seen to be functions of
the coast arc, through the B matrix.

When the post-injection trajectory is determined, launching from a
given location at a certain time requires a definite coast arc in the parking
orbit. For purposes of studying the effect of the parking orbit, it was
assumed that the coast arc could be continuously varied for a given mission.
This implies moving the launcher location. As pointed out above, such an
implication is unrealistic, but it does point out the effects which are caused
by the parking orbit. Another way to change the coast arc would be to launch
at a different date, but this requires a different post-injection trajectory,

and the effect of the coast interval would not be as clearly seen.

- 13 -
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VII. RESULTS

The technique described has been used to determine the FOM for
several representative lunar and interplanetary missions. Table 3 describes
the trajectories and the FOM associated with each of them for the system
described in Sec II with the component errors listed in Table 1. The flow
chart of computations performed is shown in Fig. 5.

Figure 6 presents FOM versus coast arc in the parking orbit, y ,
for the interplanetary trajectories and Fig. 7 for the lunar trajectories. It
is clear that there is an optimum value of the coast arc. This is because
correlations between coordinate deviations change as a function of the
parking orbit interval, and certain errors may cancel each other. Table 4
lists the standard deviations in polar coordinates and the correlation coeffi-
cients for the slow lunar trajectory. Data for the other six trajectories
are similar.

Figure 8 presents the FOM versus flight time for the three lunar
trajectories. These trajectories impact at roughly the same time, thus
having similar geometrical properties. It is seen that the faster trajec-
tories tend to have smaller target error (but, see Fig. 7 where there is a
reversal for a coast arc greater than 132 deg). A similar conclusion would
be reached for the interplanetary cases. This does not mean that a larger
midcourse maneuver would necessarily be required on the slower trajec-
tories, for the higher error sensitivities mean that less correction is

required for a given error.

- 14 -
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As seen in Appendix B, the values of some of the error terms
depend on certain parameters; specifically accelerometer erection angle,
#, and gyro orientation angles, @ and 8. These parameters were varied

for the fast Venus trajectory, and the results are shown in Fig. 9.

VIII. CONCLUSIONS

It is seen from Table 2 that of all the error sources considered,
only a few are of major significance. Any improvement in the design of
the other components would not improve guidance accuracy much if the
major error sources were unimproved.

As shown in Figs. 6 and 7 there is an optimum value of coast arc
which minimizes the effects of guidance component errors. By scheduling
launches appropriately, trajectories could be designed that would utilize
near optimum coast arc. Other considerations, such as post-injection
trajectory characteristics determined by the positions of the planets will
normally determine the scheduling of a launch. The value of the parking
orbit study is that it shows that longer coast intervals do not necessarily
require larger midcourse maneuver capabilities.

As shown in Fig. 9, there is an optimum set of values for the guid-
ance parameters, a, 8, and §. This figure applies to a specific trajectory,
but a similar result would apply to other trajectories. The method
developed in this paper may be used to evaluate the guidance parameters

for any specific trajectory.

- 15 -
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TABLE 1

ONE-SIGMA COMPONENT ERRORS (ASSUMING GAUSSIAN DISTRIBUTION)

k. Description | 7k

1 A Accelerometer Scale Factor Error 5 x 1074

2 B " n n n 5 x 1074

3 A h Null Shift 4 x 1073 m/sec?

4 B n mooom 4 x 1073 m/sec?

5 C " n " 4 x 1073 m/sec?

6 A " Alignment Error 0 (See Note #1)

7 B " " n 4 x 1074 radian

8 C " " " 4 x 1074 radian

9 Gyro No. 1 Initial Offset 5 x 1074 radian

10 moom2 " " 5 x 1074 radian

11 " mo3 " " 5 x 1074 radian

12 L | Random Drift 3 x 1079 radian/sec
13 noon g " n 3 x 107% radian/sec
14 o3 " " 3 x 1076 radian/sec
15 L | "g-sensitive" drift 5 x 1077 rad-sec/m
16 L " m 5 x 1077 rad-sec/m
17 oo 3 " " 5 x 10”7 rad-sec/m
18 Clock Error 0 (See Note #2)

Note 1: A accelerometer alignment error is taken to be zero, as it is con-
sidered that the A accelerometer alignment defines a reference
direction for all other alignments.

Note 2: Clock error was found to have a truly negligible effect even when

using pessimistic estimates.
- 18 -
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TABLE 2

NUMBER OF UNITS OF VARIANCE FOR ERROR SOURCES STUDIED

k S— o | g | gm ueow | et | oy | aeoy
1 A accelerometer scale factor error 18.100 20.139 27.207 32. 466 17,565 45,431 14. 142
2 B " » . » 9.887 5.211 5.736 18. 411 14.118 9.124 11.555
3 A " null shift error 6. 825 8,830 9.852 12.357 8.797 1.065 0.091
4 B . LA " 1,709 1,144 0.756 2.316 2.208 3.156 4. 147
5 c " non " 0. 003 0.011 0.122 0.029 0.018 0.048 0.012
6 A " alignment error 0 0 0 0 0 0 0
7 B " " " 2.487 3.043 . 0.756 2,064 2.466 1.980 0.419
8 C " " " 0, 008 0, 027 0. 287 0. 062 0.038 0.103 0. 026
9 Gyro No. 1 initial offset 7.102 6.719 2,707 7.965 6.175 3.761 3.640

10 L A 0. 002 0. 009 0.117 0. 045 0. 037 0. 047 0.012

11 " " 3 " " 0.011 0. 036 0. 461 0,112 0.074 0. 267 0. 067

12 " " 1 random drift 6. 637 8,412 21,343 1,507 7.557 5.761 2,655

13 " "2 " " 0. 000 0. 002 0.479 0.350 0.367 0.782 0.213
14 " " 3 " " 0.030 0. 080 1.115 0.203 0.112 2.294 0.543
15 n " 1 "g-sensitive" drift 47.154 48, 160 25,992 21,106 41.627 24.632 62. 084
16 " "2 " " 0. 001 0.012 0. 528 0. 451 0.415 0.223 0. 064
17 " "3 " " 0.062 0.165 2. 542 0.556 0.427 1.327 0.329
18 Clock error 0 0 0 /] 0 0 0

TOTAL for all Sources 100. 000 100, 000 100. 000 100, 000 100. 000 100. 000 100. 000
TOTAL for Gyro No. 1 60. 893 63,291 50. 042 30.578 55.359 34.154 68, 389
TOTAL for A Accelerometer 24.925 26, 969 37.059 44,823 24.362 46,496 14,233

reduce uncorrected target errors significantly while improving the other components would have a much smaller effect.

The two totals shown above illustrate that one high quality accelerometer (A) and one high quality gyro (No. 1) would

- 17 -
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TABLE 3

TRAJECTORY DESCRIPTION AND UNCORRECTED ONE-SIGMA

TARGET ERROR (FOM) DUE TO INJECTION ERRORS

Trajectory
Number

1

Trajectory
Type

Slow lunar
Nominal lunar
Fast lunar
Slow Venus
Fast Venus
Slow Mars

Fast Mars

Parking Orbit

- 18 -

Flight Time Interval (sec) FOM(km)
90 hrs 659.976 15, 650.
66 hrs 721.648 6, 380.
42 hrs 859.978 2,530.
118 days 784.3957 346, 900,

88 days 768.8225 212,100.
235 days 1,575.6735 454, 800.
216 days 1,548, 0000 351, 300.
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TABLE 4

STATISTICS OF INJECTION ERRORS FOR TRAJECTORY NO. 1(1)

Standard deviation

o, = 16.000 Km

o, = 10.942 Km

o, = 14.443 m/sec

o = 2.0501 millirad
o, = 10.268 Km

o = 18.255 m/sec

Pxr

(1) This data is

-0.86676
0.98355
-0.74795
-0.91866
0.95163
-0.81131

0.40330

Pxz = Prz

“Prz “Pyz TPyz =

Prz

=pr; =0

representative of the seven trajectories studied.

- 19 -
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Fig. 1. Accelerometer Orientation

- 20 -
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x

/A - INPUT AXIS
SA - SPIN AXIS ‘
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Fig. 3. Gyro Orientation
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Fig. 4. Coordinate Systems
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APPENDIX A

DESCRIPTION OF THE MATRICES

A. The B matrix - transforms errors in polar coordinates around the

coast arc y.

1
o
7(2 siny - 3y)
r

v
(2 - cosvy) ;(cosw -1)

r

7(4 siny - 3y) 2;(1 - cosy) (2cosy - 1)

2r (cosy - 1)

<
]

r siny -V siny
0 0
0 0

SV

b
1]

2
1

Vv
(A +t2 - tl)?

siny

2 siny

cos y

0

cos y

L siny
v

= \/_E the circular satellite velocity at altitude r - rg.
r

-V .
— Ssiny
r

cos vy J

+ (y1 + r‘o)2 the radial distance from the center

of the Earth at injection into the

parking orbit.

where Ar is nominally zero and is

used for arbitrarily changing the

coast interval
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The values of ry and p are:

ro

H

English

20,902,910 ft

14.07689 x 1015 ft3/sec?

Metric

6,372,160 m

3.986135 x 1014 m3/sec

2

B. The Ei matrix - transforms errors in Cartesian coordinates to errors

in polar coordinates (i = 1 at end of first burn phase, i = 2 at end of

second burn phase)
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X3 Y. + r X
r. = \/X?+(Y.+r)2 cos—1 =170 cos r-——l—
1 i i 0 r r. 1 r
0 i 0
X. X, X.
= > 2 o2 Y N D | . 1
Vi = Xi + Yi sm<r0> T, sin <I"1 r0>

The standard trajectory has all the necessary quantities in the

inertial plumbline Cartesian coordinate system.
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APPENDIX B

DERIVATION OF ERROR TERMS

One of the major aims of this analytical derivation is to avoid
integrating perturbed trajectories. If the parking orbit interval is changed,
the second burn phase produces different incremental Cartesian coordi-
nates, although it produces identical incremental polar coordinates. (The
incremental coordinates measured are of interest as they correspond to
the physical situation of setting all initial conditions equal to zero at the
start of the second burn.) With a changed parking orbit interval, the local
horizon at start of second burn will have rotated through V/rAr radians
with reference to the standard local horizon (Ar = 0). The effect of this
rotation can be duplicated by imagining that the accelerometers and gyros
have been rotated by this amount and that the second burn occurs at the
standard location on the coast arc. Then the transformation [SX] oEg = [SZ]z
uses the standard E9 matrix. In the following derivations the subscript k
takes values 1 or 2 for first or second burn, and &, = ¢ + (k - 1)v/rAe,

where ¢ indicates @, a, or 8.

A. Accelerometer Errors

1. Mathematical Model

Assume that the accelerometer axes A, B, C are aligned relative to
a fixed inertial reference as shown in Fig. 1 and that the computer loop is

as shown in Fig. 2.
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2. Effect of an Accelerometer Scale Factor Error

From Fig. 2, the differential equation for the error in the A

coordinate due to a scale factor error (JA) only is:

b }L _ e
8A+;—38A = JAA

m

The solution of this equation is

8A = JAA = Jp (X cos@ +Y sin @)

Therefore the error terms are":

5§X = JA(X cos2(1k +Y sin ¢, cosd)
8X = Jp(X coszak +Y sin @) cos @)
§Y = 8X tan{,

8Y = 83X tan()

82 = 8Z = 0

Similarly for the B accelerometer:

*The subscript m denotes a measured coordinate, as distinguished
from a true coordinate. It will be assumed throughout that the measured
coordinate deviations are equal to the true coordinate deviations.
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5X = Jg (X sin2 ¢y - Y sin ¢y cos @)
38X = Jg(X sin? ¢, - Y sin Gk cos Gk)
3Y = -8X cot
8Y = -8X cot @

and no first order errors arise from JC'
3. Effect of a Null Shift Error
From Fig. 2, the differential equation for the error in A coordi-

nates due to a null shift (nA) only is:

.. 73 _
r

The solution of this equation is

3
= r |y - flal
5A nA# [1 cos < r3t>J

Therefore the error terms are:

3
85X = np \/Ej—cos(lk sin —%t
r
I‘3 ®
38X np—o cos¢k[l - cos < -r_3-t

8Y = 8X tan @,
8Y = 8X tan @)
$2 = 8Z = 0
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Similarly for the B accelerometer:

3
r . . H
-ng ﬂsm ¢k S1n< r—3t>
83X = -n __r3 sin@, |1 - cos il
Bpu k r3

8X

8Y = -8X cotGk
8Y = -8X cot 1
8Z =8Z = 0

and for the C accelerometer:

85X = 8X = 8Y = 8Y = 0

. 3
8Z = ng ﬁsin( it)
T r3
SZ =n -If 1 - cos .it
Cr 3

4. Effect of an Alignment Error

From Fig. 1, looking at the A accelerometer only;

Am = Xm cos(¢k+ GA) + {(m sin(¢k + GA)

so that, since ep is a small angle:

SAm = eA(—j.(m sin(lk + ?m cos ¢k)
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Therefore the error terms are:

$X = ‘A('Xm sin ¢y cos @y + S.{m cosz¢k)
X = eA(—Xm sin Gk cos ¢k +Y cos2¢k)
8Y = 8X tan @

8Y = 3X tan (@

52 = 82 = 0

Similarly for the B accelerometer:
$X = ‘B(Xm cos ¢k sin ¢k + S.{m sin2 ¢k)

83X

‘B(Xm cos ¢k sin ¢k + Y., sin2 Gk)

SY = -85{ cot ¢k

8Y = -3X cot @y

82 =8Z =0

The C accelerometer alignment error was considered to consist of

two components, €cx and €y such that:

8Z = ‘CX.Xm + ‘CY:y;m
Assuming that these two components are uncorrelated and have equal

standard deviations, €, about zero mean;
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02. =€2(}'(2 +Y2)
Z C m m

Therefore the error terms are:
/ <2 72
€c X +Y
- /2 2

8X = 8X = 8Y = 8Y = 0

Y4

5. Effect of Integrator Scale Factor Error (Clock Error)

This error arises from errors in the timing device that controls
the integration interval in the digital integrator. From Fig. 2, the differ-
ential equation for the error in A coordinates due to a clock error (Jt)
only is:

LX) 2 # _ .e ..
SA + (1 +Jt) ;§8A = (2 +Jt)JtA - {1 +J,£)J,CAm

The solution of this equation is:

3A = Ji cos ( I%t) fsecz< I%—T)f(ZA - Am) cos( :'—31> drdT
= Jt(ZA - Am) to first order™
SA = Ji (A - Am) to first order™

*Although all the terms required to evaluate the integrals are avail-
able on the standard trajectory, it was found that the first order approxi-
mation is quite adequate for these terms.
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Therefore the error terms are:

5X = J, (X - Xp)
38X = J,(2X - X )
8Y = J (Y - Y_)
8Y = J,(2Y - Y, )
82 = 8Z = 0

The clock error would also cause a change in the parking orbit
interval. This effect, which is that of starting the second burn at the
wrong time can be most easily calculated directly in polar coordinates. It

is simply an error in the downrange distance:

\'
8x = -Jtro?(tl + v+ A1)

where t is the parking orbit interval. This element forms the only non-

zero element in [SZ]3 .

B. Gyro Errors

1. Mathematical Model

Assume that the gyro axes are oriented as shown in Fig. 3. This
particular configuration is chosen so as to eliminate anisoelastic drift rate

(i.e., drift rate proportional to the product of accelerations along spin
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and input axes) while maintaining orthogonality of the input axes. With no
anisoelastic drift, the general expression for angular error, 0, about the

input axis of a gyro is:
0 = 04 + gt +,Lsfa1dt -Hfasdt
0 is the initial offset
éO is the random drift rate
a; 1is the measurable acceleration along the input axis
ag 1is the measurable acceleration along the spin axis
p1and pg are constants

The gyro error will cause the accelerometers to sense a false accelera-

tion, the acceleration error vector being:

— —

8a = @ X ap (standard) ~

2. Input axis perpendicular to the thrust plane (IAl)

T
Sa =| O 0 ) =j9Xm-19Ym
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t
38X = -Y 98 = -Y 6, + 65t - pu, f (Xm cosa + Y  sina)dt
0

5Y

t
ime = j&m[eo + éot - B f (Xm cosa + 'S?m sina/)dt:|
0

The integral appearing in these two equations must be evaluated as:

t
k
(k - 1M(X,,1 cosay + Y, g sinay) + f (X, cosay + Yo, siney)dt

te-1

where the quantities multiplied by (k - 1) represent the "g-sensitive" drift
effects of first burn as initial conditions for the second burn. Setting this
quantity, Xml cosap + le sina@y; = W1, and interpreting the integral to
be over the first or second burning phase {for k = 1 or 2 respectively), the

error terms are:
BX = -00¥1 - 8ofiy + (k- DY oty + 7+ 4]
+I.L1[i3k cosay + i4k singy + (k - 1)3'(m2w1]

83X

-89k - Og[I1x + (k - DY palty + 7 + A7)
+,LI[13k cosa + I siney + (k - 1)Ym2W1]
8Y = 00X + Bg[Ig + (k- DX o0t +7+ an)

- pp[Tg cos ey + 1y siney + (- 1) X, oW]
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- }J-I[Isk cos ak + Iﬁk Sinak + (k - l)Xm2W1]

I

tk-1

r

k-1

5Y = 8gXpk + 9 [Izk + (k- DXpolty + 7+ Ar)]
8Z =8Z =0
where
ty
tk-1
. tk
Lk = (t -ty )Xt Lk =
tg-1
. ...
I3y = YmXmdt I3k =
tk-1
tk ..
Iix = Y Ypdt Iy =
tg-1
Ll tk o0 L
Iy, = X X dt Iy =
te-1
tk a9 *
Ig, = X Y _dt Igi =
tk-1

- 41 -
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3. Spin Axis Perpendicular to the Thrust Plane (SA5, SAg).
Consider gyro No. 2, where the input axis is B degrees above the
X axis (the analysis for gyro No. 3 follows immediately by setting

B' = B +90°).

,_.
—
~ |

8a = | 8cosf 8sinf 0 =T<.9(§.(.' cos B - X__ sinBy)
k k m k m k

82 = 0, (S?m cos f - im sin By) + éOt (ﬁfm cos Bk - Xm sin Bxk)

t
+/"S(§m cos Bk - im sin Bk)f (ﬁim cosfB + Ym sin B) dt
0

As in Part 2 of this Appendix, the integral must be evaluated as:
. L tk LX) .o
(k - 1)(Xml cos Bl +Y 4 sinBy) + (X, cosBy + Y, sinBy)dt

te-1

where the quantities multiplied by (k - 1) represent the "g-sensitive" drift
effects of first burn as initial conditions for the second burn. Setting this

quantity, X1 cosB1 + Y ., sin Bl = Wy, the error terms are:

5X = 8X = 8Y = 8Y = 0
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8Z = QO(Ymk CcOs Bk - ka Slan) + gO[ilk COs Bk - I2k Sian +
(k - 1)(Ym2 cosfg - X9 8inBo)t; + 7 + Ar)]
+ [I cos2B +(i - 1 ) cosf3,, sinf —i si 26 +
Ksl 3k k 4k " 5k k SHPK 7 iek S Pk

(k - 1)({(m2 cos Bz - sz sinBZ) W2]

8Z = 00 (Y, cosBy - Xy sinpy) + 0q Iy, cos By - Iy sinBy +
(k - 1)(Y 9 cos By - Xpyo sin Bty + 7 + A7)
2 : 2
+“’S[13k cos“f, + (I4k - I, ) cos By sinB) - Ig sin“By +
(k - 1)(Yrnz cos Bz - sz sinBz)W2]

The twelve integrals used in the above analysis can be reduced to

seven, since, after integration by parts:

e = Yo (i = tee1) = Yok

Lk = Yoty - te-1) - 20y,

where
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Iok = Xk (g = te-1) - 2Igk

where
tx
Ig = f X, dt
tg-1
Igp = Igp (b =t g) - Igi
where
tx .
tg-1
Y
Ige = 3¥mk
1
Isk = 3l10k
where
ty -
te-1
: 152
Isk = 3%¥mk
1
Isk = 3111k
where
ty
I,,, = x2 dt
11k m
tk-1
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Tek = YmkXmk - Isk
Tek = 1ok - Isk

tk . ]
Ile = Ymedt
t

k-1

where

Thus the integrals 13k’ I7k’ I8k’ ng, IlOk’ Illk’ and Iy 9k are needed, and
these can be evaluated in terms of quantities available on the standard tra-

jectory.
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